Cohen-macaulayness of Rees Algebras of Modules
نویسنده
چکیده
We provide the sufficient conditions for Rees algebras of modules to be Cohen-Macaulay, which has been proven in the case of Rees algebras of ideals in [11] and [4]. As it turns out the generalization from ideals to modules is not just a routine generalization, but requires a great deal of technical development. We use the technique of generic Bourbaki ideals introduced by Simis, Ulrich and Vasconcelos [14] to obtain the Cohen-Macaulayness of Rees Algebras of modules.
منابع مشابه
Rees Algebras of Modules
We study Rees algebras of modules within a fairly general framework. We introduce an approach through the notion of Bourbaki ideals that allow the use of deformation theory. One can talk about the (essentially unique) Bourbaki ideal I(E) of a module E which, in many situations, allows to reduce the nature of the Rees algebra of E to that of its Bourbaki ideal I(E). Properties such as Cohen–Maca...
متن کاملCohen-macaulayness of Rees Algebras of Diagonal Ideals
Given two determinantal rings over a field k, we consider the Rees algebra of the diagonal ideal, the kernel of the multiplication map. The special fiber ring of the diagonal ideal is the homogeneous coordinate ring of the secant variety. When the Rees algebra and the symmetric algebra coincide, we show that the Rees algebra is CohenMacaulay.
متن کاملResults on Generalization of Burch’s Inequality and the Depth of Rees Algebra and Associated Graded Rings of an Ideal with Respect to a Cohen-Macaulay Module
Let be a local Cohen-Macaulay ring with infinite residue field, an Cohen - Macaulay module and an ideal of Consider and , respectively, the Rees Algebra and associated graded ring of , and denote by the analytic spread of Burch’s inequality says that and equality holds if is Cohen-Macaulay. Thus, in that case one can compute the depth of associated graded ring of as In this paper we ...
متن کاملCohen-Macaulayness of special fiber rings
Let (R, m) be a Noetherian local ring and let I be an R-ideal. Inspired by the work of Hübl and Huneke, we look for conditions that guarantee the Cohen-Macaulayness of the special fiber ring F = R/mR of I, where R denotes the Rees algebra of I. Our key idea is to require ‘good’ intersection properties as well as ‘few’ homogeneous generating relations in low degrees. In particular, if I is a str...
متن کاملLocal cohomology modules of bigraded Rees algebras
Formulas are obtained in terms of complete reductions for the bigraded components of local cohomology modules of bigraded Rees algebras of 0-dimensional ideals in 2-dimensional Cohen-Macaulay local rings. As a consequence, cohomological expressions for the coefficients of the Bhattacharya polynomial of such ideals are obtained.
متن کامل